فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


نویسندگان: 

Rafiee A. | Moradi P. | Ghaderzadeh A.

اطلاعات دوره: 
  • سال: 

    1400
  • دوره: 

    51
  • شماره: 

    4
  • صفحات: 

    443-454
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    187
  • دانلود: 

    37
چکیده: 

Multi-label classification aims at assigning more than one label to each instance. Many real-world multi-label classification tasks are high dimensional, leading to reduced performance of traditional classifiers. Feature selection is a common approach to tackle this issue by choosing prominent Features. Multi-label Feature selection is an NP-hard approach, and so far, some swarm intelligence-based strategies and have been proposed to find a near optimal solution within a reasonable time. In this paper, a hybrid intelligence algorithm based on the binary algorithm of particle swarm optimization and a novel local search strategy has been proposed to select a set of prominent Features. To this aim, Features are divided into two categories based on the extension rate and the relationship between the output and the local search strategy to increase the convergence speed. The first group Features have more similarity to class and less similarity to other Features, and the second is redundant and less relevant Features. Accordingly, a local operator is added to the particle swarm optimization algorithm to reduce redundant Features and keep relevant ones among each solution. The aim of this operator leads to enhance the convergence speed of the proposed algorithm compared to other algorithms presented in this field. Evaluation of the proposed solution and the proposed statistical test shows that the proposed approach improves different classification criteria of multi-label classification and outperforms other methods in most cases. Also in cases where achieving higher accuracy is more important than time, it is more appropriate to use this method.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 187

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 37 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2025
  • دوره: 

    13
  • شماره: 

    2
  • صفحات: 

    341-356
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    7
  • دانلود: 

    0
چکیده: 

Feature selection is an important step in data preprocessing, which helps  reducing the dimensionality of data and simplifying the models. This process not only reduces the computational complexity of models, but also improves their accuracy by eliminating irrelevant Features and noise. The three most widely used approaches for Feature selection are filter, wrapper and embedded methods.  In this paper, first we review some support vector machine based Mixed-Integer Linear Programming (MILP) models and Supervised Infinite Feature selection (Inf-FS$_s$) method.  Then, we propose three hybrid approaches based on them. The first approach involves solving the relaxed linear model of the underlying  MILP model and then solving the MILP model for those Features with nonzero weights, namely a smaller MILP. In the second approach, first the Inf-FS$_s$ method is applied to rank the Features. Then depending on the Features costs, either chooses the top Features from the ranked Features until budget parameter is reached  or solves a knapsack problem to select cost effective Features. The third approach applies the first approach to the top $20\%$ of Features ranked by Inf-FS$_s$ method. To evaluate the proposed approaches' performance, experiments are conducted on four high-dimensional benchmark datasets for fixed and random Features costs. Results demonstrate that using either of the proposed approaches can significantly reduce running time of MILP models with comparable accuracies with the original MILP models.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 7

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

KOHAVI R. | JOHN G.H.

نشریه: 

ARTIFICIAL INTELLIGENCE

اطلاعات دوره: 
  • سال: 

    1997
  • دوره: 

    97
  • شماره: 

    -
  • صفحات: 

    273-324
تعامل: 
  • استنادات: 

    2
  • بازدید: 

    255
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 255

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

LIU M.

نشریه: 

NEUROCOMPUTING

اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    215
  • شماره: 

    -
  • صفحات: 

    100-109
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    123
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 123

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

TU C.J. | CHUANG L.Y. | CHANG J.Y.

اطلاعات دوره: 
  • سال: 

    2007
  • دوره: 

    33
  • شماره: 

    1
  • صفحات: 

    111-111
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    223
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 223

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    164
  • شماره: 

    -
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    44
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 44

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

DASGUPTA A.

اطلاعات دوره: 
  • سال: 

    2007
  • دوره: 

    -
  • شماره: 

    13
  • صفحات: 

    230-239
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    167
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 167

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1394
  • دوره: 

    3
  • شماره: 

    3 (پیاپی 11)
  • صفحات: 

    1-7
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    988
  • دانلود: 

    169
چکیده: 

انتخاب بردار مشخصه مناسب برای حداکثر نمودن موفقیت یک ماشین دسته بندی کننده بسیار موثر است. در این مقاله با استفاده از ترکیب روش های مختلف محاسبه تابع هسته، یک الگوریتم انتخاب مشخصه بهینه بدون نظارت پیشنهاد گردیده است. بردار مشخصه بدست آمده از الگوریتم پیشنهادی، صحت خروجی دسته بندی کننده شبکه عصبی پس انتشارخطا را حداکثر می گرداند. در این مقاله برای مطالعه موردی از دسته بندی استاندارد تصاویر فشرده شده مبتنی بر کدگذاری تبدیلی و تصاویر فشرده نشده با استفاده از رشته بیت آن ها استفاده می گردد. استانداردهای مورد نظر برای دسته بندی، استانداردهای JPEG و JPEG2000 و تصاویر فشرده نشده با فرمت TIFF می باشند. با استفاده از بردار مشخصه بدست آمده از الگوریتم پیشنهادی، صحت دسته بندی کننده در حدود 98% می گردد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 988

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 169 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    24
  • شماره: 

    -
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    53
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 53

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسنده: 

Bozorgi Hadi | Sojoodi Omid

اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    1
تعامل: 
  • بازدید: 

    163
  • دانلود: 

    0
چکیده: 

MEDICAL DATASETS ARE OFTEN CLASSIFIED BY A LARGE NUMBER OF DISEASE MEASUREMENTS AND A RELATIVELY SMALL NUMBER OF PATIENT RECORDS. ALL THESE MEASUREMENTS (FeatureS) ARE NOT IMPORTANT OR IRRELEVANT/NOISY. THESE FeatureS MAY BE ESPECIALLY HARMFUL IN THE CASE OF RELATIVELY SMALL TRAINING SETS, WHERE THIS IRRELEVANCY AND REDUNDANCY IS HARDER TO EVALUATE. ON THE OTHER HAND, THIS EXTREME NUMBER OF FeatureS CARRIES THE PROBLEM OF MEMORY USAGE IN ORDER TO REPRESENT THE DATASET. CLASSIFICATION SYSTEMS HAVE BEEN WIDELY UTILIZED IN MEDICAL DOMAIN TO EXPLORE PATIENT’S DATA AND EXTRACT A PREDICTIVE MODEL. THIS MODEL HELPS PHYSICIANS TO IMPROVE THEIR PROGNOSIS, DIAGNOSIS OR TREATMENT PLANNING PROCEDURES. MODELS BASED ON DATA MINING AND MACHINE LEARNING TECHNIQUES HAVE BEEN DEVELOPED TO DETECT THE DISEASE EARLY OR ASSIST IN CLINICAL BREAST CANCER DIAGNOSES. MEDICAL DATASETS ARE OFTEN CLASSIFIED BY A LARGE NUMBER OF DISEASE MEASUREMENTS AND A RELATIVELY SMALL NUMBER OF PATIENT RECORDS. ALL THESE MEASUREMENTS (FeatureS) ARE NOT IMPORTANT OR IRRELEVANT/NOISY. THIS PAPER PRESENTS A GRAPH BASED Feature selection METHOD FOR MEDICAL DATABASE CLASSIFICATION. SEX BENCHMARKED DATASETS, WHICH ARE AVAILABLE IN THE UCI MACHINE LEARNING REPOSITORY, HAVE BEEN USED IN THIS WORK. THE CLASSIFICATION ACCURACY SHOWS THAT THE PROPOSED METHOD IS CAPABLE OF PRODUCING GOOD RESULTS WITH FEWER FeatureS THAN THE ORIGINAL DATASETS.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 163

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button